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1. Introduction 
The coupling between a hybrid mode and a Gaussian beam has been described a long time 
ago in dielectric waveguides [1]. The problem was then revised for corrugated horn 
antennas, with a vast literature, for example [2,3]. 
Given the widespread use of corrugated waveguides in intrinsically narrowband ECRH 
experiments and the relatively limited bandwidth of corrugated feedhorns, it is very 
common in literature to assume that a balanced HE11 mode is propagating in the 
waveguide and compute coupling under that assumption [3]. While perfectly adequate in a 
reasonably wide region around the frequency of perfect balance, this is not correct 
everywhere, and using formulas for balanced conditions can lead to significant 
underestimation of coupling loss at the extreme margins of operation. This is especially 
important when the bandwidth of corrugated waveguides is being pushed to the limit, as is 
the case of transmission lines for reflectometry [4,5,6]. 
The electromagnetic problem is resumed here, and the approximations involved are 
explicitly stated. 
A program was written to compute the coupling coefficient as a function of frequency for 
real waveguide configurations, with the goal of providing a design tool for assessment of 
the operation limits of candidate transmission lines.  
Another program was written using elliptical Gaussian beams, to provide a somewhat 
better representation of the field at low frequency, using a small number of modes. 
Reference [7] is closely followed for the formulation of the problem in the waveguide, and 
no new theoretical developments were made in writing this design tool. 
Ohmic losses are neglected because they are usually small, and negligible at band extrema 
with respect to coupling losses for transmission lines with a reasonably large number of 
mitre bends. 
The software source codes are available as a .tgz archive at the same location as this report. 
Users are kindly requested to cite this report in their papers. 

2. Mode coupling at the aperture of a waveguide 
The field at the (plane) aperture of a waveguide can be described in full generality, on the 
waveguide side of the aperture, as a linear combination of forward and backward 
propagating modes. If the field at the aperture differs from zero over a sufficiently wide 
region (with respect to the wavelength) and the phasefront is sufficiently smooth, in other 
words if the first Fresnel zone is sufficiently wide with respect to wavelength, the radiated 
field can be described as a paraxial beam and the wave equation can be approximated with 
the Helmholtz equation. 
The Gauss-Hermite and Gauss-Laguerre modes are complete orthonormal bases for the 
solutions of that equation, so either  the electric or the magnetic field at the aperture can be 
represented exactly as a sum of them. While an infinite sum would be required in general, 
even the number of degrees of freedom of the exact far field electromagnetic problem is 
limited [8] so that a finite sum can always be used for practical purposes. 
If relation 

! 

hT =
1
Z

z" eT  

where superscript T stands for the transverse component and Z is a modal impedance  
independent from spatial corrdinates, holds for modal functions in both regions, then 
continuity of either field implies continuity of the other. Under such circumstances one can 
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legitimately use gaussian beams to represent e.g. any single component of the transverse 
electric field, using the so called scalar approach.  
The relation above, unlike TE and TM modes in smooth waveguide, is only valid for HE11 
when ka>>X11, where a is the waveguide radius, k is as usual the wavenumber 2π/λ and 
X11 is the mode eigenvalue. 
When the HE11 mode moves out of balance, an independent multimode scalar treatment for 
each polarization allows using gaussian beams for a fairly accurate description of the 
problem until the paraxial approximation is no longer valid. At still lower frequency, 
reflections at the aperture become significant, so that even assuming that a single mode is 
present at the aperture of the corrugated waveguide is not justified. 
An alternative approach is using a vector description of Gaussian beams, and describing 
coupling between HE11 and the first mode [9,10]. A few approximations are involved, and 
a multimode treatment is not possible because the vector fields do not satisfy mode 
ortogonality. This is not pursued here. 

3. Coupling between HE11 and TEMmn: scalar treatment 
The field at the aperture of a circular corrugated waveguide of radius a can be described as 
a sum of hybrid modes on the waveguide side and as a sum of Gaussian modes on the free-
space side. 
Assuming that a pure (y-polarized, without loss of generality) HE11 mode is propagating 
inside a corrugated waveguide and that reflections at the aperture are negligible, the phase 
front at the aperture is flat, and the waist of the Gaussian beams can be located there. The 
flatness of the phase front allows treating the coupling problem in the real rather than in 
the complex domain. 
Continuity of transverse fields at the aperture can be written as 

! 

ET " ,#( ) = cnm ETEMnm
T " ,#( )

n,m
$ = EHE11

T " ,#( )
   

(1) 

€ 

HT ρ,ϕ( ) = cnmHTEMnm
T ρ,ϕ( )

n,m
∑ = HHE11

T ρ,ϕ( )
   

(2) 

As said in the introduction, neglect of reflections implies assuming ET/HT is constant 
across the interface, so that only (1) can be considered.

 3.1 Gaussian beam modes TEMmn 
Gauss-Hermite modes are used here, although the symmetry of the problem would suggest 
the use of Gauss-Laguerre modes as normally found in literature, because the symmetry is 
immediately broken as soon as reflective optics are used, as is customary in most 
millimeter-waves applications. 
The beam modes are defined as usual in the positive-z space 

! 

" mn x( ) =" mn x,y,z( ) #Umn x,y,z( )Hm 2
x

w z( )
$ 

% 
& 

' 

( 
) Hn 2

y
w z( )

$ 

% 
& 

' 

( 
) exp * jkz( )  (3) 

with the definition 

€ 

Umn x,y,z( ) ≡

≡
1

2m+n−1πm!n!
exp − x2 + y2

w z( )2
 

 
 
 

 

 
 
 
1

w z( )
exp − jk

x2 + y2

2R z( )
+ j m+ n +1( )arctan 2z

kw0
2

 

 
  

 

 
      

(4)

 

The real function representing component x or y of the electric field at the aperture is 
decomposed as a sum of beam modes ! mn(x,y,0) 
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€ 

Ex y( ) ρ,ϕ( ) = cnmψmn x,y,0( )
n,m
∑ = cnmψmn ρ,ϕ,0( )

n,m
∑

    

(5)

 
with 

€ 

ψmn ρ,ϕ,0( ) =
1

2m+n−1πm!n!

1
w0 a

exp − ρ2

w0 a( )2
 

 
 
 

 

 
 
 Hm 2 ρcosϕ

w0 a

 

 
 

 

 
 Hn 2 ρ sinϕ

w0 a

 

 
 

 

 
 

   

(6) 

using the waveguide radius a to normalize the radial coordinate and the beam waist. 
Equation (6) can be written with minimal variation for elliptical beams 

! 

" mn #,$,0( ) =
1

2m+n%1&m!n!

1

w0x a( ) w0y a( )
'

' exp %
#cos$( )2

w0x a( )2 %
#sin$( )2

w0y a( )2

( 

) 

* 
* * 

+ 

, 

- 
- - 
Hm 2

#cos$
w0 a

( 

) 
* 

+ 

, 
- Hn 2

#sin$
w0 a

( 

) 
* 

+ 

, 
-    (6b)

 

The beam modes written in this form are normalized 

! 

" mn " mn = " mn" mn
* da

#
$ = a2 " mn %,&,0( )" mn

* %,&,0( )%d%d& =1
0

2'

$
0

(

$
  

(7)
 

where "  is the plane where the aperture is located.  
The normalized waist w0/a is chosen for circular beams as in [3], as the one giving 
maximum power in TEM00 for a balanced HE11, as is customary, i.e. w0/a=0.643515. 

3.2 Hybrid mode HE11 
The waveguide corrugations are assumed rectangular, as described in [7], with period p, 
depth d and width w. The last quantity should not to be confounded with the Gaussian 
beams waist, which shall always be normalized by a and appear in formulae as w/a, 
whereas the groove width shall always be normalized by the corrugation period p and 
appears as w/p.  
For disambiguation of the definition of corrugation width, the corrugated circular 
waveguide can be seen as a periodic set of irises with radius a, thickness (p-w) and period 
p in a smooth circular waveguide of radius a+d. 
Assuming the corrugation period p to be much smaller than the wavelength, the boundary 
conditions in a lossless waveguide can be approximated with continuous anisotropic 
impedance 

! 

Z" =
E"

Hz a
= 0     (8) 

€ 

Zz = −
Ez
Hϕ a

≅ jZZ0      (9) 

where Z is an adimensional normalized reactance, which can be written as 

€ 

Z =
w
p

tankd

1+
2
ka
tankd

     (10) 

and can be approximated for large waveguides as  

€ 

Z =
w
p
tankd           (10b) 

The approximation is not used in the program. When kd is too close [i.e. within 10 (̂-15)] 
to π/2, definition (10) is replaced for numerical consistency with its limit for large tan(kd): 
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! 

Z =
w
p

ka
2  

          

(10c) 

The transverse fields of the HE11 mode are given in [7]: 

€ 

EHE11
T r,ϕ( ) = R11Z0 er ∂rT11+

d11
r
∂ϕ ′ T 11

 

 
 

 

 
 + eϕ

1
r
∂ϕT11− d11∂r ′ T 11

 

 
 

 

 
 

 

 
 

 

 
 
  

(11) 

€ 

HHE11
T r,ϕ( ) =

1
R11Z0

−er
1
r
∂ϕT11 − d11R11

2 ∂r ′ T 11
 

 
 

 

 
 + eϕ ∂rT11 +

d11R11
2

r
∂ϕ ′ T 11

 

 
  

 

 
  

 

 
 
 

 

 
 
 
  

(12) 

and the longitudinal ones are 

€ 

EHE11
z r,ϕ( ) = j R11Z0

X11
2

R11aka
T11       (13) 

€ 

HHE11
z r,ϕ( ) =

j
R11Z0

d11R11X11
2

aka
′ T 11      (14) 

with 

! 

T11 r,"( ) = NJ1 X11
r
a

# 

$ 
% 

& 

' 
( sin"

        
(15) 

€ 

′ T 11 r,ϕ( ) = NJ1 X11
r
a

 

 
 

 

 
 cosϕ

        
(16) 

The quantity d11 represents the ratio between TE and TM components in the normal mode. 
Substitution of the field components (11-14) into the boundary condition (8) for the 
azimuthal wall impedance gives d11: 

! 

d11 =
J1 X11( )

X11 " J 1 X11( )          
(17)

 
The quantity R11 is the normalized propagation constant 

€ 

R11 =
β11
k

= 1− X11
ka

 

 
 

 

 
 
2

        
(18)

 
The normalization should be consistent with that used in the beam modes, i.e. 

€ 

EHE11
T EHE11

T* = dρ dϕEHE11
T ρ,ϕ,z= 0( ) • EHE11

* ρ,ϕ,z= 0( )
0

2π

∫
0

1

∫ ≡1
  (19) 

from which one can write a normalization constant N, different from that of [7] that 
enforces instead a unit total power <ET|HT*> 

€ 

N =
1

R1Z0 1+ d1
2( ) X11

2

4
J0
2 X11( ) + J1

2 X11( )[ ] − 12 1+ d1( )2J1
2 X11( )    

(20)
 

3.3 Computation of HE11 eigenvalue 
Substitution of the field components into the boundary condition (9) for the longitudinal 
reactance gives an implicit equation for the HE11 eigenvalue: 

! 

1
d11

" d11R11
2 +

X11
2

Zka
= 0     (21) 

The left hand side is a function of X11, ka, kd, w/p and the implicit equation can be solved 
for the eigenvalue X11 as a function of frequency when the waveguide parameters a, w/p, d 
are given.  
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Equation (21) is solved numerically for X11 with a simple bisection algorithm to a 
resolution of 10 (̂-6), knowing that X11 is monotonically decreasing from the eigenvalue of 
TM11 (3.831706) to the eigenvalue of TE11 (1.841183) as the effective corrugation depth D, 
defined as  

! 

D =
2
"
arctanZ     (22) 

increases from 0 to 2. 

4. Coupling coefficient with circular beams 
With these assumptions, the coupling coefficient between the Gaussian Beam modes and 
the field in the waveguide can be written as 

€ 

Ex y( ),HE11 ψij = cmn
x y( ) ψmnψij

n,m
∑       (23)

 
i.e. using the orthonormality of beam modes 

€ 

cmn
x y( ) = Ex y( ),HE11ψmn          (24) 

Writing the cartesian components of EHE11 as 

! 

Ex,HE11 = Er ,HE11cos" # E" ,HE11 sin"

Ey,HE11 = Er ,HE11 sin" + E" ,HE11cos"
      (25) 

and assuming y,x are respectively co,cross-polar directions, one can write both coefficients 

€ 

cpq
y

cmn
x

 

 

 
 

 

 

 
 

=
1
πw

1

2p+q−1p!q!
Er ,HE11 exp −

r 2

w2

 

 
  

 

 
  H p 2 r cosϕ

w

 

 
 

 

 
 Hq 2 r sinϕ

w

 

 
 

 

 
 sinϕ +

 
 
 

  0
2π∫0

a∫

+Eϕ ,HE11 exp −
r 2

w2

 

 
  

 

 
  H p 2 r cosϕ

w

 

 
 

 

 
 Hq 2 r sinϕ

w

 

 
 

 

 
 cosϕ

 
 
 

  
rdϕdr

1

2m+n−1m!n!
Er ,HE11 exp −

r 2

w2

 

 
  

 

 
  Hm 2 r cosϕ

w

 

 
 

 

 
 Hn 2 r sinϕ

w

 

 
 

 

 
 cosϕ +

 
 
 

  0
2π∫0

a∫

−Eϕ ,HE11 exp −
r 2

w2

 

 
  

 

 
  Hm 2 r cosϕ

w

 

 
 

 

 
 Hn 2 r sinϕ

w

 

 
 

 

 
 sinϕ

 
 
 

  
rdϕdr

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 which can be written, upon performing all substitutions, as 
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€ 

c pq
y

cmn
x

 

 

 
 

 

 

 
 

=
N R1
π w a( )

×

×

1

2p+q−1 p!q!
×

× X1ρ ′ J 1 X1ρ( )exp − ρ2

w a( )2
 

 
 
 

 

 
 
 H p 2 ρ

w a
cosϕ

 

 
 

 

 
 Hq 2 ρ

w a
sinϕ

 

 
 

 

 
 sin2ϕdϕ

0

2π
∫

 

 
 
 

 

 
 
 
dρ

0

1
∫ +

 
 
 

  

−d1 J1 X1ρ( )exp − ρ2

w a( )2
 

 
 
 

 

 
 
 H p 2 ρ

w a
cosϕ

 

 
 

 

 
 Hq 2 ρ

w a
sinϕ

 

 
 

 

 
 sin2ϕdϕ

0

2π
∫

 

 
 
 

 

 
 
 
dρ

0

1
∫ +

+ J1 X1ρ( )exp − ρ2

w a( )2
 

 
 
 

 

 
 
 H p 2 ρ

w a
cosϕ

 

 
 

 

 
 Hq 2 ρ

w a
sinϕ

 

 
 

 

 
 cos2ϕdϕ

0

2π
∫

 

 
 
 

 

 
 
 
dρ

0

1
∫ +

−d1 X1ρ ′ J 1 X1ρ( )exp − ρ2

w a( )2
 

 
 
 

 

 
 
 H p 2 ρ

w a
cosϕ

 

 
 

 

 
 Hq 2 ρ

w a
sinϕ

 

 
 

 

 
 cos2ϕdϕ

0

2π
∫

 

 
 
 

 

 
 
 
dρ

0

1
∫

 
 
 

  

1

2m+n−1m!n!
×

× X1ρ ′ J 1 X1ρ( )exp − ρ2

w a( )2
 

 
 
 

 

 
 
 Hm 2 ρ

w a
cosϕ

 

 
 

 

 
 Hn 2 ρ

w a
sinϕ

 

 
 

 

 
 sinϕ cosϕdϕ

0

2π
∫

 

 
 
 

 

 
 
 
dρ

0

1
∫

 
 
 

  
+

−d1 J1 X1ρ( )exp − ρ2

w a( )2
 

 
 
 

 

 
 
 Hm 2 ρ

w a
cosϕ

 

 
 

 

 
 Hn 2 ρ

w a
sinϕ

 

 
 

 

 
 sinϕ cosϕdϕ

0

2π
∫

 

 
 
 

 

 
 
 
dρ

0

1
∫ +

− J1 X1ρ( )exp − ρ2

w a( )2
 

 
 
 

 

 
 
 Hm 2 ρ

w a
cosϕ

 

 
 

 

 
 Hn 2 ρ

w a
sinϕ

 

 
 

 

 
 sinϕ cosϕdϕ

0

2π
∫

 

 
 
 

 

 
 
 
dρ

0

1
∫ +

+d1 X1ρ ′ J 1 X1ρ( )exp − ρ2

w a( )2
 

 
 
 

 

 
 
 Hm 2 ρ

w a
cosϕ

 

 
 

 

 
 Hn 2 ρ

w a
sinϕ

 

 
 

 

 
 sinϕ cosϕdϕ

0

2π

∫
 

 
 
 

 

 
 
 
dρ

0

1
∫

 
 
 

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(26)

 

With the definitions 

! 

Imn x( ) = Hm 2xcos"( )Hn 2xsin"( )sin" cos" d"
0

2#

$     (27)
 

€ 

Jpq x( ) = Hp 2x cosϕ( )Hq 2x sinϕ( )sin2ϕdϕ
0

2π
∫      (28)

 

! 

Kpq x( ) = Hp 2xcos"( )Hq 2xsin"( )cos2" d"
0

2#

$ = Jqp x( )   (29)
 

and remembering that  

! 

Hn " x( ) = " 1( )nHn x( )         (30) 
one can deduce that co-/cross-polar radiation couples into even-/odd-modes: 

€ 

Im 2k( ) = I 2k( )m = Jm 2k+1( ) = J 2k+1( )m = Km 2k+1( ) = K 2k+1( )m = 0 ∀m,k  (31)
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The integrals I,J(K) can be computed explicitly.  
Using the explicit expression of Hermite polynomials [11 n. 22.3.10] 

! 

Hn x( ) = n! " 1( ) j 2x( )n" 2 j

j! n " 2 j( )!j =0

n
2

# 
$ % 

& 
' ( 

)        (32)

 
one can obtain 

! 

I2i+1,2 j+1 x( ) = 2i +1( )! 2 j +1( )! " 1( )l+k
8x2( ) j+1+i" l" k( )

l! 2 j +1" 2l( )!k! 2i +1" 2k( )!l=0

j

# $
k=0

i
#

$ sin%( )2 j" l+1( ) cos%( )2 i" k+1( )d%
0

2&

'

 (33)

 

€ 

J2i,2 j x( ) = 2i( )! 2 j( )!
−1( )k+l 8x2( )

i−k+ j−l

k! 2i − 2k( )!l! 2 j − 2l( )!l=0

j

∑
k=0

i
∑ cosϕ( )2 i−k( ) sinϕ( )2 j−l+1( )dϕ

0

2π
∫

 
(34)

 
The integrals can be computed recursively [11, n. 4.3.127]: 

€ 

Am,n m+n≠0
= sinϕ( )m cosϕ( )ndϕ

0
2π∫ =

= 2
sinϕ( )m+1 cosϕ( )n−1

m+ n
0

π

+
n−1
m+ n

 

 
 

 

 
 Am,n−2 =

n−1
m+ n

 

 
 

 

 
 Am,n−2 =

= −2
sinϕ( )m−1 cosϕ( )n+1

m+ n
0

π

+
m−1
m+ n

 

 
 

 

 
 Am−2,n =

m−1
m+ n

 

 
 

 

 
 Am−2,n

   (35)

 

! 

A2m,2n =
A0,0
2m+n

2 m " p( ) " 1
m " p+ np=0

m"1
# 2 n " q( ) " 1

n " qq=0

n"1
#      (36) 

Remembering that A00=2#, one can find 

€ 

I2i+1,2 j+1 x( ) = π 2i +1( )! 2 j +1( )!
−1( )l+k 4x2( )

j+1+i−l−k( )

l! k! 2 j − 2l( )!! 2i − 2k( )!! i − k + 2 + j − l( )!l=0

j

∑
k=0

i
∑  (37)

 

€ 

J2i ,2 j x( ) = π 2i( )! 2 j( )!
−1( )i+ j−l−k 4x2( )

l+k
2l +1( )

i − k( )! 2k( )!! j − l( )! 2l( )!! l + k +1( )!l=0

j

∑
k=0

i

∑    (38)
 

Rearranging indices one can write 

! 

I2i+1,2 j+1 " # $ 2i+1,2 j+1,n
%
w a

& 

' 
( 

) 

* 
+ 
2n

n=1

i+ j+1

, =

= # 2i +1( )! 2 j +1( )!
- 1( ) j+i- n+1( ) 4x2( )n

n +1( )!
1

j - m( )! i - p( )! 2m( )!! 2p( )!!p=0,i
m=0, j
m+p=n- 1

,
n=1

i+ j+1

,
 

(39)
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€ 

J2i,2 j = K2 j,2i ≡ π β2i,2 j,n
ρ
w a
 

 
 

 

 
 

2n

n=0

i+ j

∑ =

= π 2i( )! 2 j( )!
−1( )i+ j−n 4x2( )n

n +1( )!
2m +1( )

j −m( )! i − p( )! 2m( )!! 2p( )!!p=0,i
m=0, j
m+ p=n

∑
n=0

i+ j

∑
       (40)

 

Hence 

! 

c2i ,2 j
y

c2i +1,2 j +1
x

" 

# 

$ 
$ 

% 

& 

' 
' 
= N ( R1 )

)

1

22i +2 j *1 2i( )! 2 j( )!
)

) +2i ,2 j ,n * d1+2 j ,2i ,n( )
n=0

i + j

, X1w
a

I0
a
w
, X1w

a
,2n +1

- 

. 
/ 

0 

1 
2 +

3 
4 
5 

6 5 

+ 1+ d1( ) +2 j ,2i ,n * +2i ,2 j ,n( )
n=0

i + j

, I
a
w
, X1w

a
,2n

- 

. 
/ 

0 

1 
2 
7 
8 
5 

9 5 

1+ d1( )
22i +2 j +1 2i +1( )! 2 j +1( )!

: 2i +1,2 j +1,n
n=1

i + j+1
, )

)
X1w

a
I0

a
w
, X1w

a
,2n +1

- 

. 
/ 

0 

1 
2 * 2I

a
w
, X1w

a
,2n

- 

. 
/ 

0 

1 
2 

3 
4 
6 

7 
8 
9 

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 

    (41) 

with the definitions 

€ 

α2i+1,2j+1,n =

= 2i +1( )! 2 j +1( )!
−1( ) j+i−n+1( )22n

n +1( )!
1

j −m( )! i − p( )! 2m( )!! 2p( )!!p=0,i
m=0,j
m+ p=n−1

∑    (42) 

! 

" 2i,2 j,n = 2i( )! 2 j( )!
#1( )i+ j#n22n

n +1( )!
2m +1( )

i # p( )! 2p( )!! j #m( )! 2m( )!!p=0,i
m=0, j
m+p=n

$   (43)

 
and 

€ 

I0 y,b,n( ) = J0 bx( )exp −x2( )xndx
0

y

∫
 
      (44)

 

! 

I y,b,n( ) = J1 bx( )exp " x2( )xndx
0

y

#        (45)
 

€ 

′ I y,b,n( ) = ′ J 1 bx( )exp−x2( )xndx
0

y

∫ = I0 y,b,n( ) − 1
b

I y,b,n −1( )   (46) 
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The integrals in (44-45) must be computed numerically. 

5. Program description 
The FORTRAN program reads input parameters from a file named parms.txt: 

¥ frequency range 
¥ waveguide diameter 
¥ corrugation depth 
¥ maximum number of steps in w/p 
¥ m,n indices of TEM modes to use 

A few parameters, most notably the number of frequency steps, are set with a 
PARAMETER statement, since they involve dimensioning internal arrays.  
Input parameters are checked for internal consistency and compatibility with the sizes set 
in the PARAMETER statement. 
Once the indices of TEM modes are known and validated, the α,β coefficients are 
evaluated.  
Then two nested loops, respectively on the normalized corrugation widh w/p (outer loop) 
and on frequency (inner loop) set the real calculations: first of all, the HE11 eigenvalue is 
computed by solving (21) as described above, then the integrals of Bessel functions at (44-
45) are computed using subroutine DGAUS8 of the SLATEC Common Mathematical 
Library [12], the I1MACH and D1MACH subroutines being replaced with their Fortran 90 
equivalent [13]. 
Once the building blocks are ready, the coupling coefficients (co- or cross-polar) are 
computed for all the modes requested, and results are written on files, one per each value 
of normalized corrugation width. Each file contains a table of frequency, ka, normalized 
corrugation depth D (22), HE11 eigenvalue X11 (21), normalized power in the output modes 
(i.e. the sum of squares of coupling coefficients), and then the list of (signed) coupling 
coefficients for all TEM modes requested (to be squared in order to get power fraction). 
Program execution takes a negligible time (0.2s for 36 modes, 80 frequency points, 2 steps 
in corrugation width, on a 1GHz PPC with 1GB RAM). 

6. Coupling coefficient with elliptical beams 
If circular beams are used in (24) and the subsequent derivations, integration over $ can no 
longer be separated and made analytically, so that one is left with numerical integration 
only.  
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€ 

cpq
y

cmn
x

 

 

 
 

 

 

 
 

=
N R1

πwxwy
×

×

a

2p+q−1p!q!
×

X1J0 X1ρ( ) 1− 1+ d1( )cos2ϕ[ ] − 1+ d1( ) 1
ρ

J1 X1ρ( ) 1−2cos2ϕ[ ] 
 
 

 
 
 
×

0

2π∫0

1∫

×exp −
ρ2cos2ϕ

wx
2 a2 −

ρ2sin2ϕ

wy
2 a2

 

 
 
 

 

 
 
 H p 2

ρcosϕ
wx a

 

 
 

 

 
 Hq 2

ρsinϕ
wy a

 

 
  

 

 
  ρdϕdρ

1+ d1( )a

2m+n−1m!n!
X1J0 X1ρ( ) − 2

ρ
J1 X1ρ( )

 
 
 

 
 
 

sinϕcosϕ ×
0

2π∫0

1∫

×exp −
ρ2cos2ϕ

wx
2 a2 −

ρ2sin2ϕ

wy
2 a2

 

 
 
 

 

 
 
 Hm 2

ρcosϕ
wx a

 

 
 

 

 
 Hn 2

ρsinϕ
wy a

 

 
  

 

 
  ρdϕdρ

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 (47) 

Substituting for the Hermite polynominals for modes TEM0,0, TEM0,6, TEM1,1, TEM0,4, 
TEM1,3, TEM1,5 (that were found largest at low frequency) one can write expressions for 
the coupling coefficients. 

€ 

c00
y =

N R1
π wx a( ) wy a( )

1+ d1( )
2

×

2J1 X1ρ( ) − X1ρJ0 X1ρ( )[ ] exp − ρ
2 cos2ϕ
wx
2 a2

−
ρ2 sin2ϕ
wy
2 a2

 

 
 
 

 

 
 
 cos 2ϕ( )dϕ0

2π∫0
1∫ dρ +

−
N R1

π wx a( ) wy a( )
−1+ d1( )

2
X1ρJ0 X1ρ( ) exp − ρ

2 cos2ϕ
wx
2 a2

−
ρ2 sin2ϕ
wy
2 a2

 

 
 
 

 

 
 
 dϕdρ0

2π∫0
1∫

    (48)

 

! 

c02
y = "

1
2
c00
y "

2N R1 1+ d1( )
# wx a( ) wy a( )

$X1J0 X1$( ) " 2J1 X1$( )[ ]I1 $;wx a,wy a( )d$ +
0
1%

"
2N R1 " 1+ d1( )
# wx a( ) wy a( )

X1$J0 X1$( )I2 $;wx a,wy a( )d$0
1%

  (49)

 

€ 

c11
x =

N R1

π wx a( ) wy a( )
2 1+ d1( ) ×

× X1ρJ0 X1ρ( ) −2J1 X1ρ( )( ) ρ2sin22ϕ

wx a( ) wy a( )
 

 

 
 

 

 

 
 exp −

ρ2cos2ϕ

wx
2 a2 −

ρ2sin2ϕ

wy
2 a2

 

 
 
 

 

 
 
 dϕ0

2π∫ dρ
0

1∫

   (50)

 

€ 

c04
y =

6
4
c00
y + 2 3C1 −

3
4
C2

      
(51)

 

! 

c06
y = "

5
4
c00
y "

3 5
2
C1 +

3 5
4 2

C2 "
8 2
3 5

C3
     

(52)

 

! 

c13
x = " 3C4 +

4
3
C5

        
(53)

 



 

11 

! 

c15
x =

15
2

C4 "
4 5
3
C5 +

8
15

C6
      

(54)

 

using the definitions 

€ 

I1 ρ;wx a,wy a( ) =
ρ2 sin2ϕ
wy
2 a2

 

 
 
 

 

 
 
 exp −

ρ2 cos2ϕ
wx
2 a2

−
ρ2 sin2ϕ
wy
2 a2

 

 
 
 

 

 
 
 cos 2ϕ( )dϕ0

2π∫   (55)

 

€ 

I2 ρ;wx a,wy a( ) =
ρ2 sin2ϕ
wy
2 a2

 

 
 
 

 

 
 
 exp −

ρ2 cos2ϕ
wx
2 a2

−
ρ2 sin2ϕ
wy
2 a2

 

 
 
 

 

 
 
 dϕ0

2π∫    (56)

 

€ 

I3 ρ;wx a,wy a( ) =
ρ2sin2ϕ

wy
2 a2

 

 
 
 

 

 
 
 

2

exp −
ρ2cos2ϕ

wx
2 a2 −

ρ2sin2ϕ

wy
2 a2

 

 
 
 

 

 
 
 cos2ϕ( )dϕ0

2π∫

 

(57)

 

! 

I4 " ;wx a,wy a( ) =
" 2 sin2#

wy
2 a2

$ 

% 
& 
& 

' 

( 
) 
) 

2

exp *
" 2 cos2#

wx
2 a2

*
" 2 sin2#

wy
2 a2

$ 

% 
& 
& 

' 

( 
) 
) d#0

2+,   (58)

 

! 

I5 " ;wx a,wy a( ) =
" 2 sin2#

wy
2 a2

$ 

% 
& 
& 

' 

( 
) 
) 

3

exp *
" 2 cos2#

wx
2 a2

*
" 2 sin2#

wy
2 a2

$ 

% 
& 
& 

' 

( 
) 
) cos 2#( )d#

0
2+,

  

(59)

 

! 

I6 " ;wx a,wy a( ) =
" 2sin2#

wy
2 a2

$ 

% 
& 
& 

' 

( 
) 
) 

3

exp *
" 2cos2#

wx
2 a2 *

" 2sin2#

wy
2 a2

$ 

% 
& 
& 

' 

( 
) 
) d#

0

2+,  (60)

 

€ 

C1 =
N R1 −1+ d1( )
π wx a( ) wy a( )

X1ρJ0 X1ρ( )I2 ρ;wx a,wy a( )dρ0
1∫ +

+
N R1 1+ d1( )
π wx a( ) wy a( )

ρX1J0 X1ρ( ) − 2J1 X1ρ( )[ ]I1 ρ;wx a,wy a( )dρ0
1∫

 

 (61)

 

€ 

C2 =
N R1 −1+ d1( )
π wx a( ) wy a( )

X1ρJ0 X1ρ( )I4 ρ;wx a,wy a( )dρ0
1∫ +

+
N R1 1+ d1( )
π wx a( ) wy a( )

ρX1J0 X1ρ( ) − 2J1 X1ρ( )[ ]I3 ρ;wx a,wy a( )dρ0
1∫

  (62)

 

€ 

C3 =
N R1 −1+ d1( )
π wx a( ) wy a( )

X1ρJ0 X1ρ( )I6 ρ;wx a,wy a( )dρ0

1∫ +

+
N R1 1+ d1( )
π wx a( ) wy a( )

ρX1J0 X1ρ( ) −2J1 X1ρ( )[ ]I5 ρ;wx a,wy a( )dρ0

1∫
  (63)

 

€ 

C4 =
N R1

π wx a( ) wy a( )
1+ d1( ) ×

× X1ρJ0 X1ρ( ) − 2J1 X1ρ( )( ) ρ2 sin2 2ϕ
wx a( ) wy a( )

 

 

 
 

 

 

 
 exp −

ρ2 cos2ϕ
wx
2 a2

−
ρ2 sin2ϕ
wy
2 a2

 

 
 
 

 

 
 
 dϕ0

2π∫ dρ
0
1∫

 (64)
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! 

C5 =
N R1

" wx a( ) wy a( )
1+ d1( ) X1#J0 X1#( ) $ 2J1 X1#( )( ) %

0

1&

%
#2sin2'

wy
2 a2

( 

) 
* 
* 

+ 

, 
- 
- 

#2sin22'

wx a( ) wy a( )
( 

) 
* 
* 

+ 

, 
- 
- exp $

#2cos2'

wx
2 a2 $

#2sin2'

wy
2 a2

( 

) 
* 
* 

+ 

, 
- 
- d'

0

2"& d#

 

   (65)

 

€ 

C6 =
N R1

π wx a( ) wy a( )
1+ d1( ) X1ρJ0 X1ρ( ) − 2J1 X1ρ( )( ) ×0

1∫

×
ρ2 sin2ϕ
wy
2 a2

 

 
 
 

 

 
 
 

2
ρ2 sin2 2ϕ
wx a( ) wy a( )

 

 

 
 

 

 

 
 exp −

ρ2 cos2ϕ
wx
2 a2

−
ρ2 sin2ϕ
wy
2 a2

 

 
 
 

 

 
 
 dϕ0

2π∫ dρ

  (66) 

7. Program description 
The program was written as a modification of that described above. The input parameters 
are read from the same file, but mode indices are ignored. Expression (48) is maximized 
(its opposite minimized) at each step as a function of the waist parameters in both 
directions wx/a, wy/a. Minimization is performed using subroutine PRAXIS [14]. The 
direction of the inner (frequency) loop is reversed (i.e. high frequency to low), because the 
optimum beam is less strongly elliptical at the high frequency end (assumed close to D=2, 
where  HE11 is converging towards a smooth waveguide TE11) than at the low frequency 
end (D=0, where the HE11 is converging towards a smooth waveguide TM11), so that a 
symmetric initial point, the optimum value for circular beams mentioned in section 5, can 
be used as initial point of minimization for the first step (highest frequency). Each result is 
then used as the starting point for the next lower frequency point. Only the modes listed 
above in (48-54) are used, and the coupling coefficients are computed using the x,y waist 
sizes maximizing coupling into TEM0,0. 
The execution time is acceptable but much longer than for the program described 
previously, given the number of integrals to compute numerically and the minimization 
process. Computation of the data of Figure 14 took 42s on a 1GHz/1GB PPC. 

8. Results and discussion 
For verification, the results of figure 3 of [7] were reproduced: the figure below shows the 
Propagation constant of HE11 relative to that of TE01 in 1.094" corrugated waveguide at 
60GHz as a function of the effective corrugation depth D defined in (22). 
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Figure 1: Same as fig 3 of [7]. Propagation constant of HE11 relative to TE01 as a function of effective 
cor rugation depth for  60GHz in 27.79mm i.d. cor rugated waveguide. 
 
Then, the coupling with circular TEM modes was computed as a function of frequency for 
a few real waveguides.  
First, the two options considered  in [15] for the JET reflectometry: diameter 31.75 mm, 
corrugation depth d=.63 and 0.8 mm, w/p=2/3, frequency range 50-200 GHz. The option 
chosen was the one with 0.63 mm corrugations (red curve).  
Comparing the figure below with figure 2 of [15], one can see that coupling loss at the 
waveguide ends is dominant over ohmic loss at the low frequency end, and possibly even 
at midband. In the best-performing frequency band, the 0.98 coupling at both ends gives a 
0.088dB loss, whereas the 0.95 coupling at 50 GHz for the 0.63 mm corrugation gives 0.22 
dB loss. Ohmic losses would become comparable only for a total waveguide run of about 
90 m. 
Then, the corrugated waveguide used for ECRH at 140GHz on FTU, with diameter 88.9 
mm, corrugation depth 0.4 mm, corrugation width 0.51 mm, period 0.76 mm was 
considered. From the figures below, one can see that the waveguide has low coupling 
losses from 40 GHz to the onset of Bragg scattering around 197 GHz, which is of course a 
consequence of its large size.  
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Figure 2: fractional power  coupling between HE11 and TEM 00 for  the two options considered for  the 
JET reflectometry transmission line descr ibed in [15].  To be compared with figure 2 of  [15]. The red 
curve (cor rugation depth 0.63 mm) is for  the waveguide that was actually used. 

 
Figure 3: fractional power  coupling over  a very wide frequency range [15-200 GHz] for  the same 
waveguide of the previous figure. The modes with largest coupling coefficients are shown . The black 
curve shows the total fractional power  accounted for  by these modes, which is almost 87% at low 
frequency. 
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Figure 4: Same as Figure 3 for  the second waveguide type shown in [15] 

 
Figure 5: same as in Figure 3, but including 30 TEM m,n modes. Only modes with fractional power  
exceeding 1% somewhere are shown. As one can see, the total power  accounted for  r ises to almost 
92% at low frequency. More than 90% power  is included in the first 12 modes and more than 91% in 
the first 16. 
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Figure 6: fractional power  in the most significant TEM m,n modes for  the cor rugated waveguide used in 
the ECRH exper iment on FTU. The black trace is the fractional power  accounted for  with these 
modes. 

 
Figure 7: effect of a var iation in groove depth for  the FTU cor rugated waveguide. Black trace: actual 
waveguide. 
Then the analysis of Figure 3 was repeated with elliptical beams. 
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Figure 8: same as Figure 3, using elliptical beams. 

 
Figure 9: best fitting TEM 00 waists in x,y directions, plotted as a function of frequency for  the 
waveguide of Figure 3.The beam is circular  when the mode is balanced. 
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Figure 10: best fitting x,y waists as a function of the mode eigenvalue. This plot should have no 
dependence on waveguide parameters except for  the extents of the hor izontal axis. The points are 
equispaced in frequency for  a specific waveguide 
 

 
Figure 11: E field lines of force for  eigenvalue X11=1..841 (TE11) 
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Figure 12: E field lines of force for  eigenvalue X11=2.4055 (balanced HE11) 

 
Figure 13: E field lines of force for  eigenvalue X11=3.832 (TM 11)
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Figure 14: same as  Figure 6, using elliptical beam modes. 
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